Abstract

We propose graph-defined IRSA (G-IRSA), a new approach to design irregular repetition slotted ALOHA (IRSA) uncoordinated multiple access schemes for a controlled-size population of users that become active sporadically. The proposed scheme considers a joint design of the distribution according to which users select their repetition factors and the distribution determining how many packet replicas are transmitted per slot, as well as the connectivity of the underlying graph, i.e., to which slots users transmit. This is in sharp contrast to standard IRSA, where only the users degree distribution is optimized, while active users place their packet replicas uniformly at random and thus there is no control on how many replicas are transmitted per slot and in which slots users transmit. The key idea is to establish a link between the IRSA for the considered scenario and low-density parity-check (LDPC) codes for transmission over the binary erasure channel (BEC). Using this parallelism, the design of a G-IRSA scheme can be cast as the design of a high-rate LDPC code over the BEC. We show that the proposed scheme achieves significantly lower error floors than the original IRSA and very good decoding thresholds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.