Abstract

We propose a structure-preserving finite difference scheme for the Allen–Cahn equation with a dynamic boundary condition using the discrete variational derivative method [ 9 ]. In this method, how to discretize the energy which characterizes the equation is essential. Modifying the conventional manner and using an appropriate summation-by-parts formula, we can use a central difference operator as an approximation of an outward normal derivative on the boundary condition in the scheme. We show the stability and the existence and uniqueness of the solution for the proposed scheme. Also, we give the error estimate for the scheme. Numerical experiments demonstrate the effectiveness of the proposed scheme. Besides, through numerical experiments, we confirm that the long-time behavior of the solution under a dynamic boundary condition may differ from that under the Neumann boundary condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.