Abstract

The inositol 1,4,5-triphosphate receptor (IP3R) mediates Ca release in many cell types and is pivotal to a wide range of cellular processes. High-resolution cryoelectron microscopy studies have provided new structural details of IP3R type 1 (IP3R1), showing that channel function is determined by the movement of various domains within and between each of its four subunits. Channel properties are regulated by ligands, such as Ca and IP3, which bind at specific sites and control the interactions between these domains. However, it is not known how the various ligand-binding sites on IP3R1 interact to control the opening of the channel. In this study, we present a coarse-grained model of IP3R1 that accounts for the channel architecture and the location of specific Ca- and IP3-binding sites. This computational model accounts for the domain-domain interactions within and between the four subunits that form IP3R1, and it also describes how ligand binding regulates these interactions. Using a kinetic model, we explore how two Ca-binding sites on the cytosolic side of the channel interact with the IP3-binding site to regulate the channel open probability. Our primary finding is that the bell-shaped open probability of IP3R1 provides constraints on the relative strength of these regulatory binding sites. In particular, we argue that a specific Ca-binding site, whose function has not yet been established, is very likely a channel antagonist. Additionally, we apply our model to show that domain-domain interactions between neighboring subunits exert control over channel cooperativity and dictate the nonlinear response of the channel to Ca concentration. This suggests that specific domain-domain interactions play a pivotal role in maintaining the channel’s stability, and a disruption of these interactions may underlie disease states associated with Ca dysregulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.