Abstract
This paper proposes a reconfigurable dual-active-bridge (DAB) converter that is capable of switching between two converter structures for enhancing its performances at different output power levels. For 50%–100% load, the converter operates in full-bridge mode and achieves soft-switching in all switches independently of the input-to-output voltage ratio. Below 50% load, the converter is reconfigured to operate in half-bridge mode for reduced circulating current and improved light-load efficiency while maintaining the desired soft-switching characteristic of full-bridge mode. The achievement of soft-switching is aided by the use of a tuned $LCL$ resonant tank, which enables an accurate prediction of the phases of tank currents with respect to tank voltages, and therefore simplifies the realization of soft-switching. The effects of dead time are discussed and expressions for guiding the selection of appropriate dead time for ensuring soft-switching in practical implementation are derived. The proposed converter and the modulation scheme are experimentally verified with a 1.6-kW converter prototype, which demonstrates their merits in comparison with a nonreconfigurable, full-bridge DAB topology and conventional modulation schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.