Abstract
Solar irradiance prediction of multi-station is influenced by complex spatial characteristics and temporal fluctuations, so how to obtain accurate short-term irradiance prediction by using photovoltaic cluster data becomes a challenge. In order to address the challenge, a structural depth network embedding stacking model based on Moran’s I and seasonal trend for short-term solar irradiance prediction is proposed. Firstly, the deep spatial characteristics of photovoltaic clusters are analyzed by using bivariate Moran index to capture strong correlations between stations. Secondly, seasonal trend decomposition is used to smooth the seasonal factors in time series, and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise is used to decompose the residual components to reduce the fluctuation of signals and the complexity of data feature mapping. Finally, based on the Stacking framework, Long Short-term Memory Network, Least Absolute Selection and Shrinkage Operator, Gradient Boosted Decision Tree, and Artificial Neural Network are superimposed. And the aggregated sub-modal components are introduced into the robust integration model to predict the solar irradiance in multiple steps. Through the case study of the National Renewable Energy Laboratory open-source dataset in the United States, the conclusions are as follows: (1) The spatio-temporal method in this paper can effectively extract the deep spatial characteristics of photovoltaic stations. (2) The fusion strategy of embedded structured deep network effectively improves the stacking effect. (3) Comparing with many classical forecasting models, it shows that this method can effectively improve the forecasting effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.