Abstract

Functional manipulation of biosynthetic enzymes such as cytochrome P450s (or P450s) has attracted great interest in metabolic engineering of plant natural products. Cucurbitacins and mogrosides are plant triterpenoids that share the same backbone but display contrasting bioactivities. This structural and functional diversity of the two metabolites can be manipulated by engineering P450s. However, the functional redesign of P450s through directed evolution (DE) or structure-guided protein engineering is time consuming and challenging, often because of a lack of high-throughput screening methods and crystal structures of P450s. In this study, we used an integrated approach combining computational protein design, evolutionary information, and experimental data-driven optimization to alter the substrate specificity of a multifunctional P450 (CYP87D20) from cucumber. After three rounds of iterative design and evaluation of 96 protein variants, CYP87D20, which is involved in the cucurbitacin C biosynthetic pathway, was successfully transformed into a P450 mono-oxygenase that performs a single specific hydroxylation at C11 of cucurbitadienol. This integrated P450-engineering approach can be further applied to create a de novo pathway to produce mogrol, the precursor of the natural sweetener mogroside, or to alter the structural diversity of plant triterpenoids by functionally manipulating other P450s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.