Abstract

<div>Abstract<p>Colon cancer is the third most common cancer and the second leading cause of cancer-related death in the United States, emphasizing the need for the discovery of new cellular targets. Using a metabolomics approach, we report here that epoxygenated fatty acids (EpFA), which are eicosanoid metabolites produced by cytochrome P450 (CYP) monooxygenases, were increased in both the plasma and colon of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer mice. CYP monooxygenases were overexpressed in colon tumor tissues and colon cancer cells. Pharmacologic inhibition or genetic ablation of CYP monooxygenases suppressed AOM/DSS-induced colon tumorigenesis <i>in vivo</i>. In addition, treatment with 12,13-epoxyoctadecenoic acid (EpOME), which is a metabolite of CYP monooxygenase produced from linoleic acid, increased cytokine production and JNK phosphorylation <i>in vitro</i> and exacerbated AOM/DSS-induced colon tumorigenesis <i>in vivo</i>. Together, these results demonstrate that the previously unappreciated CYP monooxygenase pathway is upregulated in colon cancer, contributes to its pathogenesis, and could be therapeutically explored for preventing or treating colon cancer.</p>Significance:<p>This study finds that the previously unappreciated CYP monooxygenase eicosanoid pathway is deregulated in colon cancer and contributes to colon tumorigenesis.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.