Abstract

The isotopic composition of Sr has been measured in 73 formation-water samples from Paleozoic strata in the Illinois basin; 87Sr/ 86Sr ratios range from 0.7079 to 0.7108. With the exception of four samples, the waters are more radiogenic than corresponding Paleozoic sea-water values. The relatively narrow range of slightly elevated 87Sr/ 86Sr rations is uniformly distributed in waters throughout the stratigraphic column and in Silurian waters across the basin. Isotopic analyses of core samples from reservoir rocks show an absence of water-rock Sr isotopic equilibration. Basin lithology and analyses of detrital rock units indicate that clay minerals in shales and in quartz sandstone matrices represent the only significant source of radiogenic Sr for the waters. Silurian and Devonian water show a two-component mixing relation which suggests that they comprise a single hydrogeological system that evolved when radiogenic water from New Albany shales entered Silurian-Devonian carbonate rocks and mixed with marine interstitial water. Regional migration of the waters and associated petroleum within the Silurian-Devonian strata, proposed in other studies, is consistent with the Sr isotopic data. Under favorable circumstances subsurface waters are capable of retaining a Sr isotopic recor of their evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.