Abstract

AbstractThe present study examines the characteristics of clay minerals in shale gas reservoirs and their influence on reservoir properties based on X-ray diffraction and scanning electron microscopy. These analyses were combined with optical microscopy observations and core and well-log data to investigate the genesis, distribution characteristics, main controlling factors and pore features of clay minerals of the Lower Silurian Longmaxi Formation in the East Sichuan area, China. The clay mineral assemblage consists of illite + mixed-layer illite-smectite (I-S) + chlorite. This assemblage includes three sources of clay minerals: detrital, authigenic and diagenetic minerals. The lower section of the Longmaxi Formation in the Jiaoshiba area has sealing ability which resulted in abnormal high pressures during hydrocarbon generation which inhibited illitization. Therefore, an anomalous transformation sequence is present in which the mixed-layer I-S content increases with depth. This anomalous transformation sequence can be used to infer the existence of abnormal high pressures. The detrital components of the formation also affect the clay-minerals content indirectly, especially the abundance of K-feldspar. The transformation of mixed-layer I-S to illite is limited due to the limited availability of K+, which determines the extent of transformation. Three types of pores were observed in the shale reservoir rocks of the Longmaxi Formation: interparticle (interP) pores, intraparticle (intraP) pores and organic-matter pores. The clay-mineral content controls the development of intraP pores, which are dominated by pores within clay particles. For a given clay mineral content, smectite and mixed-layer I-S were more conducive to the development of shale-gas reservoirs than other clay minerals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call