Abstract

In published studies, positive relationships between nucleotype and the duration of the mitotic cell cycle in angiosperms have been reported but the highest number of species analyzed was approx. 60. Here an analysis is presented of DNA C-values and cell cycle times in root apical meristems of angiosperms comprising 110 measurements, including monocots and eudicots within a set temperature range, and encompassing an approx. 290-fold variation in DNA C-values. Data for 110 published cell cycle times of seedlings grown at temperatures between 20-25 degrees C were compared with DNA C-values (58 values for monocots and 52 for eudicots). Regression analyses were undertaken for all species, and separately for monocots and eudicots, diploids and polyploids, and annuals and perennials. Cell cycle times were plotted against the nuclear DNA C-values. A positive relationship was observed between DNA C-value and cell cycle time for all species and for eudicots and monocots separately, regardless of the presence or absence of polyploid values. In this sample, among 52 eudicots the maximum cell cycle length was 18 h, whereas the 58 monocot values ranged from 8-120 h. There was a striking additional increase in cell cycle duration in perennial monocots with C-values greater than 25 pg. Indeed, the most powerful relationship between DNA C-value and cell cycle time and the widest range of cell cycle times was in perennials regardless of ploidy level. DNA replication is identified as a rate limiting step in the cell cycle, the flexibility of DNA replication is explored, and we speculate on how the licensing of initiation points of DNA replication may be a responsive component of the positive nucleotypic effect of C-value on the duration of the mitotic cell cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.