Abstract

Abstract Background and Aims Invasive species usually demonstrate remarkable adaptability across diverse environments, successfully inhabiting a wide variety of regions. This adaptability often links to genetic differentiation and phenotypic plasticity, leading to latitudinal trends in phenotypic traits. In this study, we collected seeds of invasive plant Phytolacca americana from different latitudes and planted them in homogeneous gardens to investigate the latitudinal variation of P. americana phenotypic traits and to evaluate the effects of herbivory and heavy metals on plant growth, defence, and reproductive characteristics. Methods P. americana seeds from different latitudes were planted in a homogeneous garden. For the experimental treatment, the seeds were divided into four groups: a heavy metal treatment group and its corresponding control group, and a cover treatment group with its corresponding control group. After the fruits matured, their growth, reproduction, and defence indicators were measured. Key Results Significant latitudinal trends were observed in P. americana’s growth and defence characteristics, including changes in branch number, underground biomass, total biomass, and leaf tannin content. Compared to previous field surveys on P. americana, our study found that the latitude trends in growth structure and defence traits were consistent. But the latitudinal trend of reproductive structure is different. Moreover, heavy metals and herbivory substantially influenced the plant’s growth, reproduction, and defence mechanisms, further shaping its latitudinal patterns. Conclusions The observed phenotypic variations in P. americana across latitudes can be largely attributed to the synergistic effects of phenotypic plasticity and genetic variation. At a broader geographical scale, adaptations to heavy metal stress and herbivory pressure among different P. americana populations involve distinct trade-offs related to growth, reproduction, and defence strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.