Abstract

We prove that two-party randomized communication complexity satisfies a strong direct product property, so long as the communication lower bound is proved by a “corruption” or “one-sided discrepancy” method over a rectangular distribution. We use this to prove new n Ω(1) lower bounds for 3-player number-on-the-forehead protocols in which the first player speaks once and then the other two players proceed arbitrarily. Using other techniques, we also establish an Ω(n 1/(k−1)/(k − 1)) lower bound for k-player randomized number-on-the-forehead protocols for the disjointness function in which all messages are broadcast simultaneously. A simple corollary of this is that general randomized number-on-the-forehead protocols require Ω(log n/(k − 1)) bits of communication to compute the disjointness function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.