Abstract

Self-healing conductive hydrogels have attracted widespread attention as a new generation of smart wearable devices and human motion monitoring sensors. To improve the biocompatibility and degradability of such strain sensors, we report a sensor with a sandwich structure based on a biomucopolysaccharide hydrogel. The sensor was constructed with a stretchable self-healing hydrogel composed of polyvinyl alcohol (PVA), okra polysaccharide (OP), borax, and a conductive layer of silver nanowires. The obtained OP/PVA/borax hydrogel exhibited excellent stretchability (~1073.7%) and self-healing ability (93.6% within 5min), and the resultant hydrogel-based strain sensor demonstrated high sensitivity (gauge factor=6.34), short response time (~20ms), and good working stability. This study provides innovative ideas for the development of biopolysaccharide hydrogels for applications in the field of sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.