Abstract

Cellulose membranes were engineered to produce hydrophobic surfaces via a simple and soft chemical process to introduce multifunctional properties of an otherwise hydrophilic cellulose surface with polymer-grafted nanosilver to form a core-shell nanostructure. A superhydrophobic domain of the polymer on cellulose was created through the amide bond formation between the anhydride units of the polymer and the aminosiloxane-functionalized cellulose through layer-over-layer formulation. This formulation was confirmed through XPS, XRD, 29Si-NMR, and FTIR studies. Further, SEM and TEM analysis revealed that short linear silver nanowires were uniformly obtained with an average diameter of 60 nm and length of 288 nm, using a mild reducing agent at 60 degrees C, which resulted in a hierarchical cellulose surface. The nanosilver colloids released from the hierarchical cellulose surface were stabilized by the polymer matrix in solution, which led to a decrease in the rate of formation of Ag+ enhancing the material's killing efficacy against microbes. This biodegradable nanocomposite-based cellulose hierarchical surface development has potential for application as superhydrophobic membranes for oil-water separation, antimicrobial activity, and pH-triggered sustained release of colloidal silver for wound healing, which could possibly be applied for use as smart bandages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call