Abstract

Carbon fiber-reinforced polylactic acid (C/PLA) composites are a human bone-fixation material, but control of the material’s degradation remains a major factor hindering its widespread use. In this study, a combined method for controlling the degradation performance in vitro of C/PLA composites was designed. In this strategy, carbon fibers for C/PLA composite reinforcement were prepared in both modified and unmodified forms. A pulsed electromagnetic field (PEF) was then selectively applied during the subsequent degradation process. Results and analysis showed that the interfacial ester bonding between modified carbon fibers and PLA matrices significantly affected degradation in vitro of C/PLA composite. However, PEF affected the degradation performance of C/PLA composites and, after PEF treatment, the material's water absorption, mass retention, and bending and shearing strengths were changed to varying degrees. This method, by combining fiber modification and pulsed electromagnetic fields (abbreviated as CMP) provided a new strategy for the controlled degradation of C/PLA composites in human skeletal fixation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.