Abstract

We propose and evaluate a novel strategy for tuning the performance of a class of stencil computations on Graphics Processing Units. The strategy uses a machine learning model to predict the optimal way to load data from memory followed by a heuristic that divides other optimizations into groups and exhaustively explores one group at a time. We use a set of 104 synthetic OpenCL stencil benchmarks that are representative of many real stencil computations. We first demonstrate the need for auto-tuning by showing that the optimization space is sufficiently complex that simple approaches to determining a high-performing configuration fail. We then demonstrate the effectiveness of our approach on NVIDIA and AMD GPUs. Relative to a random sampling of the space, we find configurations that are 12%/32% faster on the NVIDIA/AMD platform in 71% and 4% less time, respectively. Relative to an expert search, we achieve 5% and 9% better performance on the two platforms in 89% and 76% less time. We also evaluate our strategy for different stencil computational intensities, varying array sizes and shapes, and in combination with expert search.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.