Abstract

Strain localization has become an attractive subject in geomechanics during the past decade. Shear bands are well known to develop in clay specimens during the straining process. Strain localization is closely related to plastic instability. In the present paper, a non-linear instability condition for the viscoplastic strain softening model during the creep process is firstly obtained. It is found that the proposed viscoplastic model is capable of describing plastic instability. Secondly, a two-dimensional linear instability analysis is performed and the preferred orientation for the growth of fluctuation and the instability condition are derived. It is worth noting that the two instability conditions are equivalent. Finally, the behavior of the clay is numerically analyzed in undrained plane-strain compression tests by the finite element method, considering a transport of pore water in the material at a quasi-static strain rate. The numerical results show that the model can predict strain localization phenomena, such as shear banding. From the numerical calculations, the effects of strain rate and permeability are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call