Abstract
In this paper we use a stochastic programming approach to develop currency option hedging models which can address problems with multiple random factors in an imperfect market. The portfolios considered in our model are rebalanced at the end of each time period, and reinvestments are allowed during the hedging process. These sequential decisions (reinvestments) are based on the evolution of random parameters such as exchange rates, interest rates, etc. We also allow the inclusion of a variety of instruments in the hedging portfolio, including short term derivative securities, short term options, and futures. These instruments help generate strategies that provide good liquidity and low trade intensity. One of the important features of the model is that it incorporates constraints on sensitivity measures such as Delta and Gamma. By ensuring that these hedge parameters track a desired trajectory (e.g., the parameters of a target option), the new model provides investment strategies that are robust with respect to the perturbations measured by Delta and Gamma. In order to manage the explosion of scenarios due to multiple random factors, we incorporate sampling within a scenario aggregation algorithm. We illustrate that when compared with other myopic hedging methods in imperfect markets, the new stochastic programming model can provide better performance. Our examples also illustrate stochastic programming as a practical computational tool for realistic hedging problems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have