Abstract

This paper focuses on addressing uncertainties in disasters when considering lateral transshipment opportunities for pre-positioning relief supplies. To deal with uncertain demands the problem is formulated as a two-stage stochastic programming model, which decides simultaneously on the locations of relief facilities and the allocations of relief supplies to demand nodes. Meanwhile, different damage levels caused by disasters are considered and reflected by a survival rate of usable stocked relief items. Multiple types of supplies with various priorities, values and spaces are explored. A real-world case study based on the Gulf Coast region of the United States is conducted to illustrate the application of the developed model. By comparison with the direct shipment solution, the lateral transshipment solution is demonstrated to be more cost-effective and flexible. The sensitivity analysis of out-of-stock penalty cost and maximum travel distance provides managerial insights for relief agencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call