Abstract

In supply chain optimisation problems, determining the location, number and capacity of facilities is concerned as strategic decisions, while mid-term and short-term decisions such as assembly policy, inventory levels and scheduling are considered as the tactical and operational decision levels. This paper addresses the optimisation of strategic and tactical decisions in the supply chain network design (SCND) under demand uncertainty. In this respect, a two-stage stochastic programming model is developed in which strategic location decisions are made in the first-stage, while the second-stage contains SCND problem and the assembly line balancing as a tactical decision. In the solution scheme, the combination of sample average approximation and Latin hypercube sampling methods is utilised to solve the developed two-stage mixed-integer stochastic programming model. Finally, computational experiments on randomly generated problem instances are presented to demonstrate the performance and power of developed model in handling uncertainty. Computational experiments showed that stochastic model yields better results compared with deterministic model in terms of objective function value, i.e. the sum of the first-stage costs and the expected second-stage costs. This issue proved that uncertainty would be a significant and fundamental element of developed model and improve the quality of solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.