Abstract

Energy harvesting in cellular networks is an emerging technique to enhance the sustainability of power-constrained wireless devices. This paper considers the co-channel deployment of a macrocell overlaid with small cells. The small cell base stations (SBSs) harvest their energy from environment sources whereas the macro base station (MBS) uses conventional power supply. Given a stochastic energy arrival process, this paper derives a power control policy for the downlink transmission of both MBS and SBSs such that they can obtain an equilibrium of their own objectives on a long-term basis (e.g., maximizing the transmission rate for SBSs while maintaining the target signal-to-interference-plus-noise ratio (SINR) at the macro users) on a given transmission channel. To this end, we propose a single controller stochastic game and develop a power control policy as a solution of a quadratic programming problem. Numerical results demonstrate the significance of the developed optimal power control policy over the conventional fixed and random power control policies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call