Abstract
The present study extends a multi-objective mathematical model in the context of industrial hazardous waste management, which covers the integrated decisions of three levels with locating, vehicle routing, and inventory control. Analyzing these decisions simultaneously not only may lead to the most effective structure in the waste management network, but also may reduce the potential risk of managing the hazardous waste. Furthermore, because of the inherent complexity of the waste management system, uncertainty is inevitable and should be acknowledged to guarantee reliability in the decision-making process. From this perspective, the proposed model is novel in the following three aspects: (1) shifting from a deterministic to stochastic environment; (2) considering a multi-period planning horizon; and (3) incorporating the inventory decisions into the problem. The problem is formulated as a multi-objective stochastic Mixed-Integer Nonlinear Programming (MINLP) model, which can be easily converted into a MILP one. In terms of methodological contribution, a new simheuristic approach that is an integration of Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) and Monte Carlo simulation is developed to overcome the stochastic combinatorial optimization problem of this study. Our findings verify the efficiency of the proposed approach as it is able to find a high-quality solution within a relatively reasonable computational time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.