Abstract

When initially introduced into a susceptible population, a disease may die out or result in a major outbreak. We present a Continuous-Time Markov Chain model for enzootic WNV transmission between two avian host species and a single vector, and use multitype branching process theory to determine the probability of disease extinction based upon the type of infected individual initially introducing the disease into the population – an exposed vector, infectious vector, or infectious host of either species. We explore how the likelihood of disease extinction depends on the ability of each host species to transmit WNV, vector biting rates on host species, and the relative abundance of host species, as well as vector abundance. Theoretical predictions are compared to the outcome of stochastic simulations. We find the community composition of hosts and vectors, as well as the means of disease introduction, can greatly affect the probability of disease extinction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.