Abstract

We present a statistical physics model to describe the stochastic behaviorof ion transport and channel transitions under an applied membrane voltage.To get pertinent ideas we apply our general theoretical scheme to ananalytically tractable model of the channel with a deep binding site whichinteracts with the permeant ions electrostatically. It is found that theinteraction is modulated by the average ionic occupancy in the bindingsite, which is enhanced by the membrane voltage increases. Above acritical voltage, the interaction gives rise to a emergence of a newconducting state along with shift of S4 charge residues in the channel.This exploratory study calls for further investigations to correlate thecomplex transition behaviors with a variety of ion channels, withparameters in the model, potential energy parameters, voltage, and ionicconcentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call