Abstract
We develop a stochastic model for an intracellular active transport problem. Our aims are to calculate the probability that a molecular motor reaches a hidden target, to study what influences this probability and to calculate the time required for the molecular motor to hit the target (mean first passage time). We study different biologically relevant scenarios, which include the possibility of multiple hidden targets (which breed competition) and the presence of obstacles. The purpose of including obstacles is to illustrate actual disruptions of the intracellular transport (which can result, for example, in several neurological disorders. From a mathematical point of view, the intracellular active transport is modelled by two independent continuous-time, discrete space Markov chains: one for the dynamics of the molecular motor in the space intervals and one for the domain of target. The process is time homogeneous and independent of the position of the molecular motor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.