Abstract

ABSTRACT: An heuristic iterative technique based upon stochastic dynamic programming is presented for the analysis of the operation of a three reservoir ‘Y’ shaped hydroelectric system. The technique is initiated using historical inflow data for the downstream reservoir. At each iteration the optimal policies for the downstream hydroelectric generating unit are used to provide relative weightings or targets for operation of upstream reservoirs. New input inflows to the downstream reservoir are then obtained by running the historical streamflow record through the optimal policies for the upstream reservoirs. These flows are then used to develop a new operating policy for the downstream reservoir and hence new targets for the upstream reservoirs. The process is continued until the operating policies for each reservoir provide the same overall system benefit for two successive iterations. Results obtained from the procedure are compared to the results obtained by historical operation of the system. The procedure is shown to develop operating policies which give benefits which are as close to the historical benefits as can be expected given the choice of the number of storage state variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call