Abstract

We pose the decumulation strategy for a defined contribution (DC) pension plan as a problem in optimal stochastic control. The controls are the withdrawal amounts and the asset allocation strategy. We impose maximum and minimum constraints on the withdrawal amounts, and impose no-shorting no-leverage constraints on the asset allocation strategy. Our objective function measures reward as the expected total withdrawals over the decumulation horizon, and risk is measured by expected shortfall (ES) at the end of the decumulation period. We solve the stochastic control problem numerically, based on a parametric model of market stochastic processes. We find that, compared to a fixed constant withdrawal strategy, with minimum withdrawal set to the constant withdrawal amount the optimal strategy has a significantly higher expected average withdrawal, at the cost of a very small increase in ES risk. Tests on bootstrapped resampled historical market data indicate that this strategy is robust to parametric model misspecification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.