Abstract

Alternating direction method of multipliers (ADMM) is a popular first-order method owing to its simplicity and efficiency. However, similar to other proximal splitting methods, the performance of ADMM degrades significantly when the scale of optimization problems to solve becomes large. In this paper, we consider combining ADMM with a class of variance-reduced stochastic gradient estimators for solving large-scale non-convex and non-smooth optimization problems. Global convergence of the generated sequence is established under the additional assumption that the object function satisfies Kurdyka-Łojasiewicz property. Numerical experiments on graph-guided fused lasso and computed tomography are presented to demonstrate the performance of the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.