Abstract

Lung biopsy is currently the most effective procedure for cancer diagnosis. However, respiration-induced location uncertainty presents a challenge in precise lung biopsy. To reduce the medical image requirements for motion modelling, in this study, local lung motion information in the region of interest (ROI) is extracted from whole chest computed tomography (CT) and CT-fluoroscopy scans to predict the motion of potentially cancerous tissue and important vessels during the model-driven lung biopsy process. The motion prior of the ROI was generated via a sparse linear combination of a subset of motion information from a respiratory motion repository, and a weighted sparse-based statistical model was used to preserve the local respiratory motion details. We also employed a motion prior-based registration method to improve the motion estimation accuracy in the ROI and designed adaptive variable coefficients to interactively weigh the relative influence of the prior knowledge and image intensity information during the registration process. The proposed method was applied to ten test subjects for the estimation of the respiratory motion field. The quantitative analysis resulted in a mean target registration error of 1.5 (0.8) mm and an average symmetric surface distance of 1.4 (0.6)mm. The proposed method shows remarkable advantages over traditional methods in preserving local motion details and reducing the estimation error in the ROI. These results also provide a benchmark for lung respiratory motion modelling in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.