Abstract
Respiration-introduced tumor location uncertainty is a challenge in lung percutaneous interventions, especially for the respiratory motion estimation of the tumor and surrounding vessel structures. In this work, a local motion modeling method is proposed based on whole-chest computed tomography (CT) and CT-fluoroscopy (CTF) scans. A weighted sparse statistical modeling (WSSM) method that can accurately capture location errors for each landmark point is proposed for lung motion prediction. By varying the sparse weight coefficients of the WSSM method, newly input motion information is approximately represented by a sparse linear combination of the respiratory motion repository and employed to serve as prior knowledge for the following registration process. We have also proposed an adaptive motion prior-based registration method to improve the motion prediction accuracy of the motion model in the region of interest (ROI). This registration method adopts a B-spline scheme to interactively weight the relative influence of the prior knowledge, model surface and image intensity information by locally controlling the deformation in the CTF image region. The proposed method has been evaluated on 15 image pairs between the end-expiratory (EE) and end-inspiratory (EI) phases and 31 four-dimensional CT (4DCT) datasets. The results reveal that the proposed WSSM method achieved a better motion prediction performance than other existing lung statistical motion modeling methods, and the motion prior-based registration method can generate more accurate local motion information in the ROI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.