Abstract
A feature is a single measurable criterion to an observation of a process. While knowledge discovery techniques successfully contribute to many fields, however, the extensive required data processing could hinder the performance of these techniques. One of the main issues in processing data is the dimensionality of the data. Therefore, focusing on reducing the data dimensionality through eliminating the insignificant attributes could be considered one of the successful steps for raising the applied techniques’ performance. On the other hand, focusing on the applied field, ovarian cancer patients continuously suffer from the extensive analysis requirements for detecting the disease as well as monitoring the treatment progress. Therefore, identifying the most significant required analysis could be a positive step to reduce the emotional and financial suffering. This research aims to reduce the data dimensionality of the ovarian cancer disease and highlight the most significant analysis using the collaboration of clustering techniques and statistical techniques. The research succeeded to identify twelve significant analysis out of forty-four with a total of fourteen significant attributes for ovarian cancer data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.