Abstract
The accurate delineation of organs-at-risk (OARs) is a crucial step in treatment planning during radiotherapy, as it minimizes the potential adverse effects of radiation on surrounding healthy organs. However, manual contouring of OARs in computed tomography (CT) images is labor-intensive and susceptible to errors, particularly for low-contrast soft tissue. Deep learning-based artificial intelligence algorithms surpass traditional methods but require large datasets. Obtaining annotated medical images is both time-consuming and expensive, hindering the collection of extensive training sets. To enhance the performance of medical image segmentation, augmentation strategies such as rotation and Gaussian smoothing are employed during preprocessing. However, these conventional data augmentation techniques cannot generate more realistic deformations, limiting improvements in accuracy. To address this issue, this study introduces a statistical deformation model-based data augmentation method for volumetric medical image segmentation. By applying diverse and realistic data augmentation to CT images from a limited patient cohort, our method significantly improves the fully automated segmentation of OARs across various body parts. We evaluate our framework on three datasets containing tumor OARs from the head, neck, chest, and abdomen. Test results demonstrate that the proposed method achieves state-of-the-art performance in numerous OARs segmentation challenges. This innovative approach holds considerable potential as a powerful tool for various medical imaging-related sub-fields, effectively addressing the challenge of limited data access.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.