Abstract

In spite of the recent advancements in wafer fabrication techniques, devices are still being individually checked and modified. This is due to the fact that the general manufacturing processes involved in wafer production have their inherent inconsistencies. As a consequence, individual devices show differences in characteristics that would render a big group of them operating out of the range of the pre-set spec limits. Therefore they would require types of modifications specific to the individual device. Knowing that the resources spent on checking and eliminating out-of-spec devices before they reach the customer are very significant, the manufacturing operation becomes hardly profitable. These wafers normally carry devices in the range of a thousand or so, making a statistical approach very attractive. In this paper, an actual industrial problem in wafer fabrication to the desired specifications is presented. The problem shows in passive filters built using Surface Acoustic Wave (SAW) theory. A solution considering a statistical process control approach to the population of devices on the wafer is proposed. The results of applying this solution are realized in significant product yield increase, huge cost cutting, and automation promotion and application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.