Abstract

Since 70-ies, when the first delay lines and filters employing surface acoustic waves (SAW) were designed and fabricated, the use of SAW devices in special and commercial applications has expanded rapidly and the range of their working parameters was extended significantly (Hashimoto, 2000; Ruppel, 2001, 2002). In the last decade, their wide application in communication systems, cellular phones and base stations, wireless temperature and gas sensors has placed new requirements to SAW devices, such as very high operating frequencies (up to 10 GHz), low insertion loss, about 1 dB, high power durability, stable parameters at high temperatures etc. The main element of a SAW device is a piezoelectric substrate with an interdigital transducer (IDT) used for generation and detection of SAW in the substrate. The number of single crystals utilized as substrates in SAW devices did not increase substantially since 70ies because a new material must satisfy the list of strict requirements to be applied in commercial SAW devices: sufficiently strong piezoelectric effect, low or moderate variation of SAW velocity with temperature, low cost of as-grown large size crystals for fabrication of 4-inch wafers, long-term power durability, well developed and non-expensive fabrication process for SAW devices etc. Today only few single crystals are utilized as substrates in SAW devices: lithium niobate, LiNbO3 (LN), lithium tantalate, LiTaO3 (LT), quartz, SiO2, lithium tetraborate, Li2B4O7 (LBO), langasite, La3Ga5SiO14 (LGS) and some crystals of LGS group (LGT, LGN etc.) with similar properties. The SAW velocities in these single crystals do not exceed 4000 m/s, which limit the highest operating frequencies of SAW devices by 2.5-3 GHz because of limitations imposed by the line-resolution technology of IDT fabrication. The minimum achievable insertion loss and maximum bandwidth of SAW devices depend on the electromechanical coupling coefficient, which can be evaluated for SAW as k2≈2ΔV/V, where ΔV is the difference between SAW velocities on free and electrically shorted surfaces. The largest values of k2 can be obtained in some orientations of LN and LT. Ferroelectric properties of these materials are responsible for a strong piezoelectric effect. As a result, k2 reaches 5.7% in LN and 1.2% in LT, for SAW. For leaky SAW (LSAW) propagating in rotated Y-cuts of both crystals, the coupling is higher and can exceed 20% for LN and 5% for LT. However, LSAW attenuates because of its leakage into the bulk waves when it propagates along the crystal surface. As a

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call