Abstract

A novel theoretical approach to collisional energy exchange during a gas–liquid collision is outlined for the case of a light, fast incoming atom. The method differs from the usual ballistic models of energy exchange in that the energy loss is statistically inferred from the eventual response of the liquid surface to the collision, rather than by directly considering the mechanics of energy transfer into the surface. With this approach, we obtain simple, accurate formulas for the average collisional energy loss and trapping probability of the incoming atom. We also present a graphical method for determining the well depth of the gas–liquid potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.