Abstract

Under inter- and intra-die parameter variations, delay of a pipelined circuit follows a statistical distribution. Hence, a pipelined circuit suffers yield loss with respect to violation of target delay constraint unless an overly pessimistic worst-case design approach is followed. We propose a statistical approach for pipeline design to enhance yield with respect to a target delay under an area budget. Right choice of the number of pipeline stages to enhance yield under an area constraint is addressed using simple statistical yield models. Next, individual stages are designed for maximizing yield under area constraint for the stages. Once the independently optimized stages are combined to form a pipeline, we propose a final global optimization step to improve pipeline yield with no area overhead, based on a concept of area borrowing. Optimization results show that, the proposed statistical design approach for pipeline improves the overall yield up to 12% over conventional design for equal area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.