Abstract

A static micromixer having a fractal-like structure is proposed inspired from natural flow networks. The mixing behavior of flow in this micromixer is investigated using numerical and experimental approaches. This converging flow network is basically using the mechanisms of fluid multilamination for mixing enhancement. Simulations are made on the flow behavior to investigate the effect of branching numbers, hierarchy levels, geometrical sizes and other design parameters using FEM methods. A rapid prototyping system for microfluidics using PDMS molding technology was successfully utilized to fabricate the designed multichannel micromixer. Experimentally, image processing technique was used to characterize flow and mixing quality in the microfluidic structure. Obtained results from numerical simulation and experimental measurements are compared with a single channel with equal flow length using the mixing quality index. This improved micromixer can further be optimized in terms of fractal shapes and numbers and geometrical size for specific applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call