Abstract
The Internet of Things (IoT) is a paradigm shift that enables billions of devices to connect to the Internet. The IoT's diverse application domains, including smart cities, smart homes, and e-health, have created new challenges, chief among them security threats. To accommodate the current networking model, traditional security measures such as firewalls and Intrusion Detection Systems (IDS) must be modified. Additionally, the Internet of Things and Cloud Computing complement one another, frequently used interchangeably when discussing technical services and collaborating to provide a more comprehensive IoT service. In this review, we focus on recent Machine Learning (ML) and Deep Learning (DL) algorithms proposed in IoT security, which can be used to address various security issues. This paper systematically reviews the architecture of IoT applications, the security aspect of IoT, service models of cloud computing, and cloud deployment models. Finally, we discuss the latest ML and DL strategies for solving various security issues in IoT networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.