Abstract

River ice breakup dates (BDs) are not merely a proxy indicator of climate variability and change, but a direct concern in the management of local ice-caused flooding. A framework of stacking ensemble learning for annual river ice BDs was developed, which included two-level components: member and combining models. The member models described the relations between BD and their affecting indicators; the combining models linked the predicted BD by each member models with the observed BD. Especially, Bayesian regularization back-propagation artificial neural network (BRANN), and adaptive neuro fuzzy inference systems (ANFIS) were employed as both member and combining models. The candidate combining models also included the simple average methods (SAM). The input variables for member models were selected by a hybrid filter and wrapper method. The performances of these models were examined using the leave-one-out cross validation. As the largest unregulated river in Alberta, Canada with ice jams frequently occurring in the vicinity of Fort McMurray, the Athabasca River at Fort McMurray was selected as the study area. The breakup dates and candidate affecting indicators in 1980–2015 were collected. The results showed that, the BRANN member models generally outperformed the ANFIS member models in terms of better performances and simpler structures. The difference between the R and MI rankings of inputs in the optimal member models may imply that the linear correlation based filter method would be feasible to generate a range of candidate inputs for further screening through other wrapper or embedded IVS methods. The SAM and BRANN combining models generally outperformed all member models. The optimal SAM combining model combined two BRANN member models and improved upon them in terms of average squared errors by 14.6% and 18.1% respectively. In this study, for the first time, the stacking ensemble learning was applied to forecasting of river ice breakup dates, which appeared promising for other river ice forecasting problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call