Abstract
This paper presents a stable numerical algorithm for the Brinkman equations by using weak Galerkin (WG) finite element methods. The Brinkman equations can be viewed mathematically as a combination of the Stokes and Darcy equations which model fluid flow in a multi-physics environment, such as flow in complex porous media with a permeability coefficient highly varying in the simulation domain. In such applications, the flow is dominated by Darcy in some regions and by Stokes in others. It is well known that the usual Stokes stable elements do not work well for Darcy flow and vice versa. The challenge of this study is on the design of numerical schemes which are stable for both the Stokes and the Darcy equations. This paper shows that the WG finite element method is capable of meeting this challenge by providing a numerical scheme that is stable and accurate for both Darcy and the Stokes dominated flows. Error estimates of optimal order are established for the corresponding WG finite element solutions. The paper also presents some numerical experiments that demonstrate the robustness, reliability, flexibility and accuracy of the WG method for the Brinkman equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.