Abstract
The strain smoothed nodal integration particle finite element method (NS-PFEM) has a high level of computational efficiency. However, it suffers from the ‘overly soft’ problem. This study presents the development of a stable nodal integration PFEM for solving geotechnical large deformation problems. A node-based strain smoothing (SNS) PFEM is developed by combining a 3-node triangular element-based PFEM and a stable nodal integration method with strain gradient in the smooth domain for single solid phase. Its performance is examined by simulating two benchmark tests on elastic material (i.e., cantilever beam and infinite plate with a circular hole) and three cases on elastoplastic material (i.e., cavity expansion, penetration of a rigid footing in soft soil and progressive failure of slope). Results show that the integration of stabilisation term gives the SNS-PFEM ‘close to exact’ stiffness, thereby resolving the ‘overly soft’ and temporal instability issues seen with the NS-PFEM. The proposed method is powerful and easily extensible for analysing large deformation problems in geotechnical engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.