Abstract

An amperometric glucose biosensor was successfully developed by electrochemical polymerization of p-chlorophenol (4-CP) at a Pt electrode in the presence of glucose oxidase. The amperometric response of this biosensor to hydrogen peroxide, formed as the product of enzymatic reaction, was measured at a potential of 0.6 V (vs. SCE) in phosphate buffer solution. The performances of sensors, prepared at different monomer concentrations and polymerization potentials, were investigated in detail. The biosensor prepared under optimal conditions had a linear response to glucose ranging from 2.5 x 10(-4) to 1.5 x 10(-2) mol L(-1) with a correlation coefficient of 0.997 and a response time of less than 2 s. Substrate selectivity of the polymer-based enzyme electrode was tested for coexisting interferents such as uric acid and ascorbic acid, and no discernible response was observed. After 90 days, the response of the biosensor remained almost unchanged, indicating very good stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call