Abstract
In this paper a stabilized finite element method to deal with incompressibility in solid mechanics is presented. A mixed formulation involving pressure and displacement fields is used and a continuous linear interpolation is considered for both fields. To overcome the Babuška–Brezzi condition, a stabilization technique based on the orthogonal sub-scale method is introduced. The main advantage of the method is the possibility of using linear triangular or tetrahedral finite elements, which are easy to generate for real industrial applications. Results are compared with standard Galerkin and Q1P0 mixed formulations for nearly incompressible problems in the context of linear elasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.