Abstract
Rear-end collisions frequently occurred in the entrance zone of expressway tunnel, necessitating enhanced traffic safety through speed guidance. However, existing speed optimization models mainly focus on urban signal-controlled intersections or expressway weaving zones, neglecting research on speed optimization in expressway tunnel entrances. This paper addresses this gap by proposing a framework for a speed guidance model in the entrance zone of expressway tunnels under a mixed traffic environment, comprising both Connected and Autonomous Vehicles (CAVs) and Human-driven Vehicles (HVs). Firstly, a CAV speed optimization model is established based on a shooting heuristic algorithm. The model targets the minimization of the weighted sum of the speed difference between adjacent vehicles and the time taken to reach the tunnel entrance. The model's constraints incorporate safe following distances, speed, and acceleration limits. For HVs, speed trajectories are determined using the Intelligent Driver Model (IDM). The CAV speed optimization model, represented as a mixed-integer nonlinear optimization problem, is solved using A Mathematical Programming Language (AMPL) and the BONMIN solver. Safety performance is evaluated using Time-to-Collision (TTC) and speed standard deviation (SD) metrics. Case study results show a significant decrease in SD as the CAV penetration rate increases, with a 58.38% reduction from 0% to 100%. The impact on SD and mean TTC is most pronounced when the CAV penetration rate is between 0% and 40%, compared to rates above 40%. The minimum TTC values at different CAV penetration rates consistently exceed the safety threshold TTC*, confirming the effectiveness of the proposed control method in enhanced safety. Sensitivity analysis further supports these findings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.