Abstract

The kinetic oxidation of 1-[(4-chlorophenyl)methyl]piperidin-4-amine (CMP) using alkaline potassium permanganate in presence of Ru(III) as catalyst was conducted spectrophotometrically at 303 K. The Pseudo first-order reaction was maintained with regard to oxidant and substrate during the reaction at an ionic strength of 0.01 mol dm-3. The first-order kinetics has been depicted with respect to catalyst Ru(III) chloride and less than unit order with substrate and medium. For the slow step, different activation parameters including ΔH# (kJ mol-1), Ea (kJ mol-1), ΔG# (kJ mol-1) and ΔS# (J K-1 mol-1) were calculated. The effect of temperature, variation of substrate concentration, oxidant, ionic strength were studied. The stoichiometry ratio of the reaction to the substrate and oxidizing agent was found to be 1:4. The products of reaction were isolated and identified as chlorobenzene and L-alanine, N-(2-aminomethylethyl)-carboxylic acid by LC-MS spectra, a suitable mechanism has been proposed and the rate laws are derived. The frontier molecular orbital (FMO) and frontier electron density (FED) of piperidiamine and the oxidative products were studied using density functional theory (DFT). The results of the theoretical calculations supported the suggested reaction pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.