Abstract
The multidimensional Manhattan networks are a family of digraphs with many appealing properties, such as vertex symmetry (in fact they are Cayley digraphs), easy routing, Hamiltonicity, and modular structure. From the known structural properties of these digraphs, we fully determine their spectra, which always contain the spectra of hypercubes. In particular, in the standard (two-dimensional) case it is shown that their line digraph structure imposes the presence of the zero eigenvalue with a large multiplicity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have