Abstract

In this paper we present a deterministic binary tomography reconstruction method based on the Spectral Projected Gradient (SPG) optimization approach. We consider a reconstruction problem with added smoothness convex prior. Using a convex-concave regularization we reformulate this problem to a non-integer and box constrained optimization problem which is suitable to solve by SPG method. The flexibility of the proposed method allows application of other reconstruction priors too. Performance of the proposed method is evaluated by experiments on the limited set of artificial data and also by comparing the obtained results with the ones provided by the often used non-deterministic Simulated Annealing method. The comparison shows its competence regarding to the quality of reconstructions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.