Abstract

In a recent paper, a nonmonotone spectral projected gradient (SPG) method was introduced by Birgin et al. for the minimization of differentiable functions on closed convex sets and extensive presented results showed that this method was very efficient. In this paper, we give a more comprehensive theoretical analysis of the SPG method. In doing so, we remove various boundedness conditions that are assumed in existing results, such as boundedness from below of f , boundedness of x k or existence of accumulation point of { x k } . If ∇ f ( · ) is uniformly continuous, we establish the convergence theory of this method and prove that the SPG method forces the sequence of projected gradients to zero. Moreover, we show under appropriate conditions that the SPG method has some encouraging convergence properties, such as the global convergence of the sequence of iterates generated by this method and the finite termination, etc. Therefore, these results show that the SPG method is attractive in theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call