Abstract

The fractional Black–Scholes equation has been widely studied by researchers in recent years. In this article, an efficient spectral collocation method based on fractional Pell functions is proposed for solving the time–fractional Black–Scholes equation. We introduce fractional Pell functions using the transformation x→xβ(β>0) on Pell polynomials, and we look for a solution of the model as a linear combination of these functions. Using operational matrices, we approximate the fractional derivative and other terms in a convenient form of the main equation. A system of algebraic equations is obtained by collocating resultant approximate equations. Convergence analysis of the numerical method has been investigated in Sobolev space. Finally, we have demonstrated the capability of the proposed method by considering numerical experiments in the form of tables and figures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.