Abstract

Triple-negative breast cancer (TNBC) is an aggressive cancer that poses a significant threat to women's health. Unfortunately, the lack of clinical targets leads the poor clinical outcomes in TNBC. Many cancers demonstrate overexpression of receptor for advanced glycation end products (RAGE), which can contribute to cancer progression. Despite the potential therapeutic value of blocking RAGE for TNBC treatment, effective peptide drugs have yet to be developed. In our study, we observed that RAGE was highly expressed in TNBC and was associated with poor disease progression. We subsequently investigated the antitumor effects and underlying mechanisms of the RAGE antagonist peptide RP7 in both in vitro and in vivo models of TNBC. Our study revealed that RP7 selectively binds to RAGE-overexpressing TNBC cell lines, including MDA-MB-231 and BT549, and significantly inhibits cell viability, migration, and invasion in both cell lines. Furthermore, RP7-treatment suppressed tumor growth in TNBC xenograft mouse models without inducing detectable toxicity in normal tissues. Mechanistically, RP7 was found to inhibit the phosphorylation of ERK1/2, IKKα/β, IKBα, and p65 to block the NF-κB pathway, prevent the entry of p65 into the nucleus, decrease the protein expression of Bcl-2 and HMGB1, and promote the release of cytochrome C from the mitochondria into the cytoplasm. These effects were observed to activate apoptosis and inhibit epithelial-mesenchymal transition (EMT) in TNBC cells. This study highlights RAGE as a candidate therapeutic target for TNBC treatment and suggests that the RAGE antagonist peptide RP7 is a promising anticancer drug for TNBC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call